On Those Ordinary Differential Equations That Are Solved Exactly by the Improved Euler Method
نویسندگان
چکیده
As a numerical method for solving ordinary differential equations y′ = f(x, y), the improved Euler method is not assumed to give exact solutions. In this paper we classify all cases where this method gives the exact solution for all initial conditions. We reduce an infinite system of partial differential equations for f(x, y) to a finite system that is sufficient and necessary for the improved Euler method to give the exact solution. The improved Euler method is the simplest explicit second order Runge-Kutta method.
منابع مشابه
Stability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type
This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...
متن کاملNumerical solution of second-order stochastic differential equations with Gaussian random parameters
In this paper, we present the numerical solution of ordinary differential equations (or SDEs), from each order especially second-order with time-varying and Gaussian random coefficients. We indicate a complete analysis for second-order equations in special case of scalar linear second-order equations (damped harmonic oscillators with additive or multiplicative noises). Making stochastic differe...
متن کاملNumerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials
Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...
متن کاملSpectrally formulated finite element for vibration analysis of an Euler-Bernoulli beam on Pasternak foundation
In this article, vibration analysis of an Euler-Bernoulli beam resting on a Pasternak-type foundation is studied. The governing equation is solved by using a spectral finite element model (SFEM). The solution involves calculating wave and time responses of the beam. The Fast Fourier Transform function is used for temporal discretization of the governing partial differential equation into a se...
متن کاملVibration Analysis of Beams Traversed by a Moving Mass
A detailed investigation into the analysis of beams with different boundary conditions. carrying either a moving mass or force is performed. Analytical and numerical techniques for determination of the dynamic behavior of beams due to a concentrated travelling force or mass are presented. The transformation of the familiar Euler-Bernoulli thin beam equation into a series of ordinary differentia...
متن کامل